

### Surfactants - Surface Active Agents

#### Definition

>Surface tension:

The molecules at the surface do not have other molecules on all sides of them and therefore are pulled inwards. This creates some internal pressure and forces liquid surfaces to contract to the minimal area.

Surfactants: are substances that absorb to surfaces or interfaces, causing a marked decrease in the surface tension.





Their importance in pharmaceutical technology

promotion of wetting, dissolution and dispersion

promotion of absorption, (increase the bioavailability)

development of new drug carriers

# Surfactants New Drug Delivery Systems

| Disperse systems | Emulsions<br>simple<br>or<br>complex                                     | Microemulsions | Vesicles<br>micelles<br>liposomes<br>niosomes                   |
|------------------|--------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|
| Application      | Controlled drug<br>delivery systems<br>elimination of<br>incompatibility | nutrition      | Controlled drug<br>delivery systems<br>targetted<br>drug intake |

#### Molecular structures of emulgents



#### Spheric structures of surfactants



#### Structures, what can be formed by surfactants



#### solubilization



The solubility (and so the bioavailability) of poorly soluble APIs can be increased by the application of the proper amount of surfactant to form micelles.

(Those systems, where the diameter of the micelles is not more than the size of the molecules from what are built up the micelles, are called solubilizated solution.)

#### **Critical micelle concentration**



#### Determination od critical micelle concentration



# **Surfactants' classification**

#### according to their origin

- natural
- synthetic

#### according to their structure

- non-ionic
- ionic
  - cationoc
  - anionic
  - amphoteric

# Surfactants' classification according to the structure



### Surfactants with natural origin

#### Vegetable origin, carbohydrate polymer derivatives:

Acacia, tragacantha, agar-agar, pectin

proteins:

gelatin, casein, o / w emulsion

high molecular weight alcohols:

stearyl alcohol, cetyl alcohol, cholesterol



#### Hydrophile-lipophile balance (HLB)

Hydrophile-lipophile balance: surfactants contain both hydrophilic groups and lipophilic groups with one or the other being more predominant, the hydrophile-lipophile balance (HLB) number is used as a measure of the ratio of these groups. It is a value between 0-40 defining the affinity of a surfactant for water or oil. HLB value of nonionic surfactants ranges from 0–20. HLB numbers >10 have an affinity for water (hydrophilic) and number <10 have an affinity of oil (lipophilic).



# Calculation of HLB value by Griffin's method (1949)



- **M**<sub>h</sub> molecular mass inside the molecule of the hydrophylic part
- M molecular mass of the total molecule

#### **Calculation of HLB**

**Emulsifier parts** 

$$HLB = \frac{A * HLB_{\alpha} + (100 - A) * HLB_{\beta}}{100}$$

 $\begin{array}{ccc} {}_{HLB_{\alpha}}, {}_{HLB_{\beta}} & \text{HLB value of emulsifier } \alpha \text{ and emulsifier } \beta \\ {}_{A} & \text{the ratio of emulsifier } \alpha \end{array}$ 

It is an arbitrary scale between 0 and 20 which expresses numerically the size and strength of the polar portion relative to the non-polar portion of the molecule.

Although originally applied to non-ionic surfactants, its use has now been extended to ionic surfactants (HLB for ionic surfactants are much higher, up to 50, based on the ionization properties.

| application          |
|----------------------|
| nti-foaming agents   |
| <i>ilo emulgents</i> |
| vetting agents       |
| /w emulsifiers       |
| etergents            |
| olubilizing agents   |
|                      |

**Application of surfactants** 





#### Brij

#### Fatty-acid ethers of polyethylenglycols

| Brij | composition           | HLB  |
|------|-----------------------|------|
| 30   | PEG (4) lauryl ether  | 9,7  |
| 35   | PEG (23) lauryl ether | 16,9 |
| 52   | PEG (2)cethyl ether   | 5,3  |
| 58   | PEG (20)cethyl ether  | 15,7 |
| 72   | PEG (2) stearyl ether | 4,9  |
| 78   | PEG (20)cethyl ether  | 15,3 |

#### Span

Fatty acid aesther of sorbitans

The hydrophylcicity of the Spans can be increased by hydrophyl groups (–OH or  $-CH_2$ -O-CH $_2$ -O-). (These groups can bound water molecules)



| Span | Chemical name          | HLB |
|------|------------------------|-----|
| 20   | sorbitan monolaurate   | 8,6 |
| 40   | sorbitan monopalmitate | 6,7 |
| 60   | sorbitan monostearate  | 4,7 |
| 65   | sorbitan tristearate   | 2,1 |
| 80   | sorbitan monooleate    | 4,3 |
| 85   | sorbitan trioleate     | 1,8 |

#### Tween

Fatty acid aesthers and polyoxethylen ethers of sorbitan

#### **PEG derivatives of Spans**

(the combination of Spans with Tweens can increase the emulsifying effect.



| Tween | chemical name                 | HLB  |
|-------|-------------------------------|------|
| 20    | PEG(20) sorbitan monolaurate  | 16,7 |
| 40    | PEG(20)sorbitan monopalmitate | 15,6 |
| 60    | PEG(20)sorbitan monostearate  | 14,9 |
| 80    | PEG(20)sorbitan monolaurate   | 15,0 |
| 85    | PEG(20)sorbitan trioleate     | 11,0 |

✓ Spans are sorbitan fatty acid esters having low

HLB values ranging from 1.8 to 8.6.

✓Tweens are polyoxyethylene derivatives of spans. So, they are more hydrophilic having higher HLB values ranging from 9.6 to 16.7.

# (a) Anionic $CH_3 + (CH_2)_{n-2} - CH_2 - 0 - S = 0^{\circ} Na^{\circ}$



### sodium dodecyl sulfate (b) Cationic



dodecyl trimethyl ammonium chloride

#### anionic

- alkali metal salts of fatty acids (soaps)
- salts of sulfuric acid esters, sodium-lauryl-sulphate, sulfonates

### CH<sub>3</sub>(CH<sub>2</sub>)<sub>10</sub>CH<sub>2</sub>OSO<sub>3</sub>Na

sodium-lauryl-sulphate

#### cationic

In these molecules, the Nitrogen or nitrogen containing molecules have a huge importance.

The four hydrogen of the ammonium ion can be substituated by alkil or aril groups (radicals). These structures are called **quaternary ammonium-basis** whom salts are the quaterner ammonium-salts or invert soaps.

#### Their stucture:



 $R_1 = R_2 = CH_3$   $R_3 = CH_3 \text{ or } CH_2C_6H_5$  $R = \text{ carbon chain } (C_{12}-C_{18})$ 

#### cationic

- cetavlon: -alkyl trimethyl-ammonium-salts
- sapamin: trimetihy-acylamydoalkyl-ammonium -salts
- zephirol : -alkyl dimethyl-benzyl-ammonium salts
- sterogenol : the nitrogen is in aromatic ring and to this nitrogen connects a long carbon chain too (Nitrogenol).

#### cationic

Benzalkonium chloratum (Zephirol),







The ionic surfactants can only be applied for external use.

# 3. Amphoteric surfactants

(a) Natural soaps (alkylcarboxylates), Lipids

# **Amphoteric surfactants**



# HLB values of ointment's substances

| Ointment        | Type of emulsion |     |
|-----------------|------------------|-----|
| substance       | o/w              | w/o |
| Cethyl alcohol  | 15               | -   |
| Stearyl alcohol | 14               | -   |
| Stearic acid    | 15               | -   |
| Lanoline        | 10               | 8   |
| Cottonseed Oil  | 10               | 5   |
| Beeswax         | 12               | 4   |

### Micellar Structure and Shape

- (a) lonics
- inner core liquid phase hydrocarbon
- Shell
- diffuse electric double layer
- (b) Nonionics
- inner core liquid phase hydrocarbon
- Shell





Pharmaceutical requirements of a proper surfactant

- promotes and helps to maintain the emulsification
- compatible
- stabile
- non-toxic
- compliant taste, smell and color

# **Required HLB values**

| Oil                | O/W emulsion | W/O emulsion |
|--------------------|--------------|--------------|
| Stearic acid       | 15           | 6            |
| Cetyl alcohol      | 15           |              |
| Stearyl alcohol    | 14           |              |
| Lanolin, anhydrous | 12           | 8            |
| Mineral oil, light | 12           | 4            |
| Liquid paraffin    | 10.5         | 4            |
| Castor oil         | 14           |              |
| Beeswax            | 9            | 5            |
| Petrolatum         | 7-8          | 4            |
| Wool fat           | 10           | 8            |

# Calculation of the required HLB for a mixture of oils, fats or waxes

- 1. Multiply the required HLB of each ingredient by its fraction from the total oily phase.
- 2. Add the obtained values to get the total required HLB for the whole oily phase.

#### Example:

- Liquid paraffin 35%
- Wool fat 1%
- Cetyl alcohol 1%
- Emulsifier system 7%
- Water to 100%

#### **Solution**

The total percentage of the oily phase is 37% and the proportion of each is: Liquid paraffin  $35/37 \times 100 = 94.6\%$ Wool fat  $1/37 \times 100 = 2.7\%$ Cetyl alcohol  $1/37 \times 100 = 2.7\%$ The total required HLB number is obtained as follows: Liquid paraffin (HLB 10.5) 94.6/100 X 10.5 = 9.93 Wool fat (HLB 10) 2.7/100 X 10 = 0.3 Cetyl alcohol (HLB 15) 2.7/100 X 15 = 0.4 Total required HLB = 10.63

# Thank you for your attention!