Disperse systems I. Emulsions

Institute of Pharmaceutical Technology and Biopharmacy

Definition of emulsion

Emulsions – as dosage forms – are **externally** or **internally** used **liquid** pharmaceutical preparation, which contain **minimum two immiscible liquids** where one of the two phases is **dispersed** within the other liquid phase.

Emulsions

Definition of emulsion

Emulsions are liquid heterogeneous, L/L type, disperse systems.

Multi-phase and – multi-component systems.

If the size of the emulsified particles is in the colloidal range than the system is called **colloid emulsion**.

Emulsions

Definition of emulsion

The **externally** used emulsions are usually called **liniments (linimentum)**, but

not the all (in name) liniments are emulsion.

(Linimentum scabicidum)

Institute of Pharmaceutical Technology and Biopharmacy

During the preparation of emulsions:

1. no changes in number of components or phases,

2. just the interfacial surface is increased

Components of emulsions

- 1. Inner, disperse phase
- 2. Outer, continuous, disperse phase
- 3. Emulsifying agent, surfactant (generally)

The **work/energy (***L***)** of manufacturing of emulsions is proportional to the surface tension and surface area.

The energy is necessary to ensure the formation of immiscible liquid droplets with small diameter in a continuous phase.

During this process, a **surface increasing** happens. (The work is necesary to overcome the surface tension.)

$$L = \gamma dF$$

- L = work (the required energy)
 - v = surface tension
- F =surface area

Surface tension

Definition:

Surface tension is a contractive tendency of the surface of a liquid that allows it to resist an external force.

Decreasing the surface tension with chemicals is not enough by its own for formation of an emulsion, but it is able to assist in it.

Surface tension

Antonov equation

$$\gamma = \gamma_1 - \gamma_2$$

The surface tension can be calculated by the interface voltage between two non-miscible fluids.

- γ = surface tension
- γ_1 = surface tension of liquid one
- γ_2 = surface tension of liquid two

Examination of surface tension

- v = n
- *v* volume of one drop
- *n* drop number
- *V* volume of Donnan-pipette what is marked between the two marked lines
- *r* radius of the capillary,
- *k* correction factor,
- $\Delta \rho$ density difference
- g gravity

Orientation theory

Bancroft's rule :

The liquid in which the surfactant has a higher solubility forms the continuous phase.

Phase-volume coefficient

$$F = \frac{V_i}{V_e}$$

 V_i = volume of the **internal** phase

 V_e = volume of the **external** phase

<i>F</i> < 0.3	low internal phase ratio (lotion)
0.3 < F < 0.7	medium internal phase ratio (cream)
<i>F</i> > 0.7	high internal phase ratio (ointment)

Phase inversion:

If the internal phase ratio is more than 0.74 (74%)! 14

Surfactants

Why do we *add surfactants* to the system at preparation of an emulsion?

- The type of the surfactant can influence the type of the emulsion (w/o, o/w) (see Bancroft's rule).
- The surfactant can **decrease the surface tension** and so the work needed during the preparation process.
- Surfactants are able to **enhance the stability** of the system.

Emulsion number

 V_{O}

Characterizes the **emulsifying properties** of **emulsifying agents**

$$E_N = \frac{V_E - V_O}{V_E} * 100$$

- E_N = emulsion number
- V_E = volume of the emulsified oil
 - = volume of separated oil

Stability

emulsions

Institute of Pharmaceutical Technology and Biopharmacy

Transforming

Transforming

Transforming

Flocculation: aggregation of droplets without coalescence.

<u>Coalescence</u>: aggregation due to <u>fusion</u> together of two or more individual droplets to <u>form a bigger drop</u>.

Transforming

Phase separation of emulsions

21

Transforming

Ostwald ripening: growth of large droplets due to molecular diffusion of oil molecules through the aqueous phase.

Transforming

Phase inversion

The aggregative properties of the emulsions are influenced by:

Interfacial **surface**, **charges**, **mechanical resistances**, (these can prevent to the confluence of the particles into a one whole (large) drop).

This layer depends on:

- the chemicals with polar and apolar groups,
- electrolytes,
- pH.

- Chemical stability
- Microbiological stability

The physical stability of emulsions depends on

- Constancy of dispersion degree
- Drop size distribution
- Surface charge

The surface layer depends on

- compounds having **polar** and **apolar parts**,
- electrolytes (value),
- from pH.

Physical stability of emulsions

Stoke's law:

stability of dispersion (sedimentation, speed of separation)

r

 ρ_1

 ρ_2

ŋ

$$v_s = \frac{2r^2(\rho_2 - \rho_1)g}{9\eta}$$

- *vs* = velocity of sedimentation
 - = radius of the droplet
 - = density of the dispersed phase
 - = density of the continuous phase
 - = viscosity of the medium

Physical stability of emulsions

Kinetics of flocculation

$$V_f = \frac{2\pi r^4(\rho_2 - \rho_1)g}{3k_B T}$$

- V_f = velocity of flocculation
 - = radius of the droplet
- ρ_1 = density of the dispersed phase
- ρ_2 = density of the continuous phase
 - = Boltzman constant
 - = absolute temperature

Boltzman constant = $1.38064852 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$

r

 k_{B}

Τ

Preparation

emulsions

Institute of Pharmaceutical Technology and Biopharmacy

1. Formation of the drops

- Energy is needed for the formation of the drops
- This energy can be decreased by application of surfactants

2. Stabilization of drops

- Surface charge,
- Polymer protective effect

Small amount of emulsion:

Dissolve the ingredient in the proper phase (lipophilic or hydrophilic medium). Disperse the internal phase in the external phase with mixing

or shaking in 4-5 steps.

Large amount (multi dose) emulsion:

With high-speed (rpm) equipment. In case of w/o emulsions the internal phase with the emulsifyier should be measured into the container and to this the addition of the external phase with surfactant should take place.

Commonly applied excipients:

- Surfactants (polysorbates, tinctura saponariae; to external use: triethanolamine+oleic acid, sodium lauryl sulfate),
- 2. Viscosity enhancers (gelatin, cellulose derivatives, PVP)
- **3. Preservatives** (Sol. conservans)
- 4. Taste and smell masking materials (vanillin, citric acid).

Complex emulsions

W/O/W emulsion

0/W/0

Complex emulsions

Hand mixer

high shear forces

High speed mixer

High speed mixer

Dispenser

3000 – 5000 rpm suction, vortex effect, shear effect

Ultrasonic homogenizer

UltraTurrax

UltraTurrax

For closed system

Colloid mill

A colloid mills are frequently used to increase the stability of suspensions and emulsions by reducing the particle/ drop size.

This is done by applying high levels of hydraulic shear to the process liquid.

1-25µm particles recirculation (option)

Colloid mill

Undispersed material is forced into a cavity formed by a **spinning rotor** and **fixed stator.**

Centrifugal force propels the material to the outside of the rotor, causing intense hydraulic shear that reduces the particle size breaking agglomerates and homogenizing the solids and liquids.

Colloid mill

Shearing can be regulate to decrease particle size by:

- increasing of rpm.
- reduction of the distance between the stator and rotor
- increasing of shearing time
- incerasing number of recirculation

Colloid mill

stator rotor

Ytron Jet mixer

More units (unit = stator + rotor) in work space(s) one after the other.

Gaulin-type homogenizer

valves

High pressure homogenizer

This equipment presses the material through a small hole with high pressure.

The operating parameters which effect the efficiency of high-pressure homogenizers are as follows:

- pressure
- temperature
- number of passes
- valve and impingement design
- flow rate

Microfluidiser - microchannel (MC) emulsification

This equipment applies high-pressure which forces the product through the interaction chamber, which consists of small channels (*microchannels*).

The product flows through the microchannels on to an impingement area resulting uniform particle size reduction in very fine particles of sub-micron range.

An equipment for parenteral feeding emulsions.

Microfluidiser - microchannel (MC)emulsification

Product enters the system via the inlet reservoir and is powered by a high-pressure pump into the interaction chamber at given speed.

In industry

Institute of Pharmaceutical Technology and Biopharmacy

Amphiphilic surface active materials

HLB value is essentially the proportion of *hydrophilic and lipophilic molecule group*, namely the polarity of the particular molecule.

Stucture:

Emulsifier Classification :

According to ionic composed of an organic lipophilic group (surface active portion)

- Naturally occurring materials and their derivatives
- Synthetic and semisynthetic surfactants:
 - Anionic
 - Cationic
 - Nonionic

Surfactants with natural origin

- <u>vegetable origin, carbohydrate polymer derivatives:</u> Acacia, tragakanta, agar-agar, pectin
 - proteins: gelatin, casein, o / w emulsion

٠

 high molecular weight alcohols: stearyl alcohol, cetyl alcohol, cholesterol

Anionic surfactants

- alkali metal salts of fatty acids (soaps) (external use),
- salts of sulfuric acid esters, sodium-lauryl-sulphate, sulfonates.

Cation type surface - quaternary ammonium bases substituted with alkyl or aryl radicals

These are rarely used as emulsifying agents, primarily as *preservatives*. (toxicity and irritancy)

Main type of cation type surface active substances:

- 1) cetavion type: alkyl trimethyl ammonium salts,
- 2) **sapamin** type: acyl amide alkyl trimethyl ammonium salts,
- 3) **zephirol** type: benzyl dimethyl alkyl ammonium salts,

4) **sterogenol** type: quaternary nitrogen compounds with long hydrocarbon chain that contain nitrogen aromatic ring

 $R_1 = R_2 = CH_3$ $R_3 = CH_3$ or $CH_2C_6H_5$ $R = carbon chain (C_{12}-C_{18})$

Cationic surfactants

Benzalkonium chloratum (Zephirol),

Cetylpyridinium chloratum

The ionic surfactants must only be applied for external use.

Non-ionic surfactants

Non-ionic surface active substances do not create ions in water.
 Low toxicity and irritancy → oral, parenteral use
 Include: fatty acid esters of polyvalent alcohols (e.g. sorbitol, mannitol),
 polyoxyethylene derivatives, and compounds containing amide and ether bonds.

- Main type of **non-ionic surfactants**:
 - 1) polyethylene glycol ethers,
 - 2) polyethylene glycol esters,
 - 3) fatty acid esters,
 - 4) sorbitan fatty acid esters and polyethylene glycol ethers
- Polyethylene glycol-fatty alcohol ethers are so called Brij, generally esters of PEG and palmitic or stearic acid.

Usage	HLB
Defoamers	1-3,5
Emulsifying agents	3,5-8
Moistening agent	7-9
O/W surfactants	8-16
Detergents	13-16
Solubilizing agents	15-40

HLB	Dispersion rate in water
1-4	Cannot be dispersed
3-6	Slightly dispersible
6-10	Milk-like dispersion
10-13	Opalescent solution
15-40	Clear solution

Examination

emulsions

Of

Institute of Pharmaceutical Technology and Biopharmacy

Parameters, what influence the emulsion's behaviors

- 1. The viscosity increases with the internal phase ratio
- 2. The viscosity increases with the particle size of the dispersed phase
- 3. Viscosity of the external phase
- 4. The applied surfactant

Particle/drop size of emulsions can influence the

- viscosity
- light-transparency
- stability

Particle/drop size of emulsions depends on

- amount and type of surfactants
- the process time
- the intensity of the process (equipment)
- other substances

Types of emulsions

1. with dilution:

o/w emulsion can be diluted with **water**

w/o emulsion can be diluted with oil

2. with conductivity:

if the **water** is the **external** phase than the **conductivity is higher**

3. with painting

methylene blue – water, Sudan red – oil

4. with fluorescency

fluorescence of oil drops in UV light

Forced stability testing

Forced stability testing

$$S = \frac{a - b}{a}$$

S = stability (%)
a = volume of water phase before the preparation
b = volume of water phase after the centrifugation

Phase inversion

If we have a w/o emulsion, and we enhance the internal phase ratio then the viscosity of the system increases. After the phase inversion the viscosity of the system decreases.

Phase inversion: If the internal phase ration is more than 74%!

Application

emulsions

OÍ

Institute of Pharmaceutical Technology and Biopharmacy

Application of emulsions

Disperse systems in drug therapy by:

- 1) oral,
- 2) peroral (e.g. O/W type emulsions for taste masking, antacid suspension),
- 3) intravenous (parenteral nutrition, nano products),
- 4) dermal and transdermal (e.g. medicinal ointments, creams, cosmetics),
- 5) vaginal (e.g. feminine washes),
- 6) rectal routes (e.g. enemas).

Application of emulsions

External use

• injecting the active substances into the skin

Peroral use

- can be increased the bioavailability
- regulation of drug release can be achieved
- protecting the active substance against oxidation and hydrolysis
- emulsions intended for oral use are o/w.

Parenteral use

nanoemulsions
Interal administration

The Intralipid-infusion is a o/w emulsion, where the drop size is between 250-300 nm.

Phospholipids can stabilize the layers. (lecithin is usually used)

Parenteral route

Propofol emulsion

iv. administration d<1000nm

20 ml ampule of 1% Propofol emulsion, intravenous injection

Soybean oil - lecithin mixture/ water

Nanoemulsions

They are usually o/w type emulsions. The mean particle size is: 1-1000 nm, or 100 – 500 nm.

Application

- skin (infections)
- cosmetics
- recombinated proteins, inactivated microorganisms

Nanoemulsions

Cosmetics

- o/w emulsions can be diluted with water and so they are washable and easily absorbed
- w/o emulsions: controlled drug liberation
- cleansing cream
- moisturizing cream (can hydrate the skin)

Emulsions in FoNo VII.

- Emulsio olei jecoris Fo No VII.
- Emulsio olei jecoris composita Fo No VII.
- Emulsio olei ricini Fo No VII.
- Emulsio paraffini cum phenolphthaleino Fo No VII.
- Emulsio laxans Fo No Vet III.
- Linimentum ad pernionem Fo No VII.
- Linimentum ammoniatum Fo No VII.
- Linimentum scabicidum Fo No VII.
- Linimentum camphoratum Fo No Vet III.

Linimentum scabidium

External use. Shake before use! Expiry 3 month.

LINIMENTUM SCABICIDUM

(Linim. scabicid.)

I. Triaethanolaminum	1,0	g	
I. Acidum oleinicum	4,0	g	
ll. Benzylium benzoicum	25,0	g	
III. Aqua destillata	25,0	g	
IV. Aqua destillata	ad 100,0	g	(45,0 g)

Készítés: Az I. alatti alkotórészek elegyéhez a II-at hozzákeverjük és a III-ka! erőteljesen összerázzuk. Az emulzió tömegét a IV-kel kiegészítjük és ismét összerázzuk.

Expedíció: Sötét üvegben. Szignatúra: Külsőleg. Bekenésre. Használat előtt felrázandó. Felhasználhatósági időtartam 3 hónap. Dermatologicum. Scabicidum.

Emulsio olei jecoris

Roborans. Antirachiticum.

In case of rachitis, osteomalatia, spasmophilia, ceratomalatia, and reconvalescentia.

API: prepared from cod fish liver. Rich from Oleum jecoris: *D and A vitamines, and essential fatty acid*. *Used in rachitis, osteomalatia, spasmophilia, scrofulosis, ceratomalatia, reconvalescentia esetén használják*.

EMULSIO OLEI JECORIS

(Emuls. ol. jecor.)

1,0
0,01
1,0
XV
92,0
0,50
1,0
100,0
. ad 200,0
-

Készítés: Az I. alatti alkotórészek elegyében a II. alatti alkotórészek homogén keverékét rázogatással feloldjuk úgy, hogy a szacharint előtte elporítjuk. A folyadékban a III-at 4-5 kb. egyenlő részletben, erőteljes összerázással emul-geáljuk. Az emulzió tömegét a IV-kel 200 g-ra kiegészítjük.

Cremor aquosus

In case of Seborrhea.

Dermatologicum. Antisenborrhoicum.

voi

Skin softener cream. External use. Keep in a cool place.

CREMOR AQUOSUS

(Crem. aquos.)

I. Paraffinum microcrystallicum

II. Nátrium laurylsulfuricum 1,0	1. Glycerinum5,0II. Nétrium Jaumdaulfuriaum1.0
II. Nátrium laurylsulfuricum1,0III. Solutio conservans1,0	

Készítés: Az I. alatti alkotórészek kb. 70 °C hőmérsékletű olvadékához az azonos hőmérsékletű II. kb. 65 g vízzel készült oldatát elegyítjük, az emulziót kihűlésig keverjük, majd hozzáadjuk a III. alatti alkotórészeket, és újra összekeverjük. A krémet vízzel 100,0 g-ra kiegészítjük.

Cremor refrigerans

Dermatologicum. Adstringens. Antiphlogisticum. In case of different skin inflammation. Cooling cream. External use. Keep in a cool place. API: Aluminium aceticum tartaricum solutum as adstringens. Side effect: Slightly irritatve.

CREMOR REFRIGERANS

(Crem. refrig.)

I. Alumínium aceticum tartaricum	
solutum	g
II. Unguentum hydrophilicum	
nonionicum	g (47,5 g)

THANK YOU FOR ATTENTION!

Important dates: 17. March 14. April 05. May