Coating process of solid dosage forms

Prof. emer. Dr. Klára Pintye-Hódi

2019. 11. 19.

Aims of coating

- to mask the taste, odour or colour of the drug
- to provide physical and chemical protection for the drug
- to separate incompatible ingredients
- to control the release of the drug from the dosage form
- to give an elegant finish to the tablet

Requirements of coating layer

- its surface is faultless, smooth, polished and uniformly;
- it has appropriate mechanical hardness;
- it protects the tablet core from the air, moisture and light;
- it masks the unpleasent taste perfectly;
- it dissolves rapidly in the gastric or intestinal juice, when it is necessary;
- it is as thin as possible;
- when the coating layer contains drug, it must be compatible.

Types of coating process

Sugar coating

 subcoating
 smoothing
 colouring
 polishing

- 2. Film coating
 - gastric coated
 - enteric coated
 - permeable coating

3. Melted coating

4. Dry coating

5. Electrostatical coating

Characteristical parameters of tablet core

The important physiological factors

a) the length of time of passageb) the role of pHc) the effects of enyzmes

The pH in the GI tract

Phases of sugar coating

Subcoating

Smoothing

Synthetical colours
 Vegetable and animal colours
 Naturale pigments
 Synthetical pigments
 Lacker materials

- lastingness of colour
- intense colouring effect
- the colours of different production series must be identical
- must be compatible
- must be resistant against atmospheric heat and moisture and production effects
- must be stable during a long storage period

Disadventages of sugar coating

- doubles the mass and increases the size
- harmful for children
- the sugar layer is brittle
- the sugar layer is not tropic-resistant
- the process needs long time

Adventages of film coating

- minimal mass increase
- a significant reduction in processing time
- increased process efficiency
- may be tropic-resistant
- pH-dependent or independent film

Requirements of film coating *materials*

- not toxic
- colourless, tasteless, odourless
- resistant against atmospheric effects
- chemically indifferent
- dissolve in the gastric or/and intestinal juices
- must be economical

Film forming polymers (1)

Cellulose ethers carboxi methyl cellulose (CMC) sodium or calcium carboxi methyl cellulose (Na or CaCMC) ethyl cellulose (EC) hydroxi ethyl cellulose (HEC) hydroxi propyl cellulose (HPC) hydroxi propyl methyl. cellulose (HPMC) *methyl cellulose (MC)*

Cellulose esters

cellulose acetate phtalate (CAP) hydroxi propyl methyl cellulose phtalate (HPMCP)¹⁶

Film forming polymers (2)

Copolymers of methacrylic acid Eudragit L 100-55 ill. L30D Eudragit S 100 Kollicoat MAE 30DP

Amino alkyl methacrylate copolymer Eudragit E 100

Film forming polymers (3)

Methacrylic ester copolymer Eudragit RL 100 ill. RL 30D Eudragit RS 100 ill. RS 30D Eudragit NE 30D **Kollicoat EMM 30D** Polivynil acetate copolymer Kollidon VA 64 Kollicoat SR 30D

> **Polivynil pyrrolidone** Kollidon

Acryl-EZE, Acryl-EZE MP

Types of aqueous polymers dispersion

Sustained release (neutral groups)

Ethyl cellulose Aquacoat ECD, Surelease Methacrylic ester copolymer Eudragit NE, RL, RS Kollicoat EMM Polivynil acetate copolymer Kollicoat RS **Delayed release** (acidic groups)

Cellulose esters Aquacoat CPD Acrylate copolymers Eudragit L, Kollicoat MAE

Process of polymerization

Process based on solvent evaporation

Mechanism of film forming from aquaeous dispersion

1. Water evaporation, capillare forces act between particles.

- 2. The particles close up.
- 3. Deformation of particles.
- 4. Coalescence of particles.

Mechanism of film forming

Starting of coalescence

MFT is the key-parameter! The temperature needs to form a homogen, trasparence film. Finishing of coalescence

During coating the drying temperature must be 10-15 °C above MFT 23

Minimal film forming temperature (MFT)

Groups

1. Polyols

- glycerol
- propylen glycol
- PEG 200-6000

2. Organic esters

- phtalate esters (dietyl, dibutyl)
- dibutyl sebacate
- citrate esters (trietyl, acetyl-trietyl, tributyl)
- triacetin
- 3. Oils/glycerids
 - castroil oil
 - acetyl monoglycerids
 - cocoa-nut oil

Decrease of the MFT

Plasticizers (10 - 30 %)

Triethyl citrate Dibutyl sebacate Glyceryl triacetate (Triacetin) Propylene glycol Polyaethylene glycol Diethyl phthalate, Dibutyl phthalate Acetyl triethyl citrate Acetyl tributyl citrate

Effect of plasticizers on the MFT

27

Effect of plasticizers

- decrease the minimal film forming temperature
- increase the elasticity of films
- decrease the tensile strength of the films
- increase the stickiness of the film
- influence the dissolution rate

Film coated crystals, pellets

Melted coating

Adventages:

- shorter process time
- the coating materials are used in the food industry
- economical
- the drug release may be controlled by the temperature

Coating materials

- chocolate
 - PEG 4000 és 6000
 - waxes
 - lipid esters

Melted coating

Release of Theophylline coating material: Compritol 888 ATO

Precirol ATO 5 (gliceryl palmitosztearate)

Compritol 888 ATO 32 (gliceryl.behenate)

Melted coating

Gattaprine (Acetyl salicylic acid)

(gliceryl-behenate)

Gattaphen T (Paracetamol)

(gliceryl palmitosztearate)

Compressed coating

Dissolution behaviour of press-coated delivery devices.

Coating with polimer powder

Electrostatic coating

gun, (C) powder feeder, (D) liquid metering pump, and (E) liquid plasticizer

Mingxi Qiao et al: A novel electrostatic dry powder coating process for pharmaceutical dosage forms: Immediate release coatings for tablets, EJPB, 2010, 78,304-310 tablet core

Coating pan

g. 8.3 Standard coating pan using the immersion tube system.

Heated drying air

Exhaust air

Coating equipment

spray gun

Accelacota 10 Perforated Pan Coater

Moving Tablet Bed in Perforated Pan

Fluid bed coating

Upper spraying (Strea-1)

Lower spraying (Strea-1) (Wurster principle) 44

Wurster Fluid Bed Coating

Continous coater

O'Hara

Compressed coating

Dry coating in fluid bed apparate (pellet)

Aim:

 Suitable for the therapy (uniformity of mass, assay, content uniformity)
Meeting the requirements of packaging and transport (size parameters, mechanical hardness, etc.)

3. The drug release is suitable (bioavailability)

Tests (1)

1. Core

- macroscopical test, uniformity of mass, geometry
- test of composition (identity, purity, assay, content uniformity)
- mechanical test (breaking hardness, friability)
- disintegration time
- porosity
- drug release

2. The colour and glitter of coating

- shade of colour, tonality, deep of colour
- reflection

3. Finaly coated dosage form

- disintegration
- drug release

cracking

cratering

bridging

Coating defects

layering

bubbling

recrystallization

marbly

scaly

wrinkling

orange peel

twin formation

It is the result of bad pellet coating.

