Drug release tests

UNIVERSITY OF PÉCS INSTITUTE OF PHARMACEUTICAL TECHNOLOGY AND BIOPHARMACY

LADME system

- Noyes & Whitney
 - "The Rate of Solution of Solid Substances in Their Own Solution."
 - Rate of drug dissolution is regulated by the saturated solution on the surface of the API particle

Brunner & Tolloczko

 Prove that the dissolution depends on the physico-chemical character of the API particle (surface, temprature...)

• Nernst & Brunner

Modify the Noyes-Whitney formula by integrating Fick's law of diffusion

IVIVC

 FDA – in vivo-in vitro correlation – mathematical aspect

 Pharmacopoea Helvetica – describes the disintegration test for the first time

 USP 18 introduced the first official drug dissolution test: rotating basket method (Apparatus 1)

Volume 10, Issue 1 | FEBRUARY 2003

Technologies

6 FIP/AAPS Guidelines for Dissolution/In Vitro Release Testing of Novel/Special Dosage Forms

Martin Siewert,¹ Jennifer Dressman,² Cynthia Brown,³ Vinod Shah⁴

¹ Aventis, Frankfurt, Germany

- ² JW Goethe University, Frankfurt, Germany
- ³ Eli Lilly and Company, Indianapolis, IN
- ⁴ Office of Pharmaceutical Science, Center for Drug Evaluation and Research,
- Food and Drug Administration, Rockville, MD

Table 1: Apparatus used for Novel/Special Dosage Forms

Type of Dosage Form	Release Method				
Solid Oral Dosage Forms (conventional)	Basket, Paddle, Reciprocating Cylinder or Flow Through Cell				
Oral Suspensions	Paddle				
Oral disintegrating Tablets	Paddle				
Chewable Tablets	Basket, Paddle or Reciprocating Cylinder with glass beads				
Transdermals – Patches	Paddle Over Disk				
Topicals – Semisolids	Franz Cell Diffusion System				
Suppositories	Paddle, modified Basket or Dual Chamber Flow Through Cel				
Chewing Gum	Special apparatus (Ph.Eur.)				
Powders and Granules	Flow Through Cell (powder/granule sample cell)				
Microparticulate Formulations	Modified Flow Through Cell				
Implants	Modified Flow Through Cell				

Disintegration tester

Disintergation tester

Test for suppositories

Drug release of dosage forms

 During drug release the appearence of the API is determined in the dissolution media in function of time.

According to the equipment structure:

- Closed system
- Open system
- Diffusion system

According to the changing amount of API in the dissolution media:

- Cumulative tests
- Differential tests

Conditions of the test

- Applied equipment
- Dissolution medium
 - Distilled water
 - HCl
 - Buffer
 - Artificial gastric juice
 - Artificial intestinal juice
 - Surfactants
- Rotation per minute
- Sampling time, method and amount
- Analytics

Dissolution tests

Recommended pH values

рН	Dissolution media
pH 1.0	HC1
pH 1.2	HCl & NaCl
pH 1.5	HCl & NaCl
pH 4.5	Phosphate or acetate buffer
pH 5.5 and 5.8	Phosphate or acetate buffer
рН б.8	Phosphate buffer
pH 7.2 and 7.5	Phosphate buffer

0-1 h	1-2 h	2-3 h	3-4 h	4-5 h	5-6 h	6-7 h	7 h
1.0							
1.2	6.8						
1.2	2.5	4.5		7.0		7.5	
1.5	4.5			7.2			

Dissolution test

Increasing the IVIVC correlation

Physiological factors	In vitro factors
pH	Different dissolution media
	(pH)
GI motility	Stirring conditions
Fat and protein,	Adding fat or milk
food interactions	
Enzymes	Applying enzymes
Bile	Applying surfactants
GI transit time	pH-gradient tests

Dissolution testers (1,2,3,4)

Dissolution test

Solid dosage forms – rotating basket apparatus

Dissolution test

Solid dosage forms – paddle apparatus

International Conference on Harmonisation (ICH)

- Rotating basket method (50/100 rpm)
- Rotating paddle method (50/75 rpm)
- Sampling time every 15 min, at rapid preparations in every 5-10 min
- Volume: 500 ml, 900 ml, 1000 ml (sink conditions)
- pH=1.2-6.8 (not more than pH=8.0)

Dissolution run

Requires user presence and interaction (technician-dependent) Does not require user presence and interaction (technician-independent)

Degassing

- Incorrect dagassing can lead to decreased or increased API levels:
 - Bubbles can adhere on the surface of the preparation (tablet) and it can swim on the dissolution medium surface
 → different hydrodynamic conditions
 - Bubbles can adhere on the surface of the rotating basket

Dissolution tester

Sampling canulla

UHMW – poly-ethylene – 35-40µm average pore size

Canulla filters

Paddle

PTFE – paddle

Basket

Basket

Basket

Sinker

Sinker

Place of sampling

Flow-through cell

- Structure:
 - Container of the medium
 - Pump pumps the medium through the cell
 - Flow-through cell
 - Water bath

Transdermal drug dissolution

Franz-cell

MicroettePlus

Transdermal patches dissolution test

Disk assembly method

- Rotating paddle is used
- 125 μm steel sieve is applied
- Patch should be placed in the container with its release surface facing up
- Temperature: $32 \pm 0.5^{\circ}C$

Dissolution tests for patches

Disk assembly method

Transdermal patches dissolution test

- Cell method
 - Paddle is used
 - Cell is stainless steel

Dissolution tests for patches

Cell method

Transdermal patches dissolution test

• Rotating cylinder method

- Paddle is substituted with a cylinder

Dissolution tests for patches

Rotating cylinder method

USP Apparatus 6

Chewing gum's dissolution test

- Buffer solution medium- artificial saliva (20-40 ml), is placed into a chewing chamber
- Temperature: 37±0.5°C
- Chewing frequency: 60 cycles/min

Dissolution test for chewing gums

Kinetic models

Evaluation of drug release tests

UNIVERSITY OF PÉCS INSTITUTE OF PHARMACEUTICAL TECHNOLOGY AND BIOPHARMACY

Liberation

Types of drug release curves

Evaluation of drug release

1.) model-independent

2.) model-dependent evaluation

Evaluation of drug release

Model-independent method

- •Fitted functions sometimes have no theoretical relationship with dissolution, they are based on experiences
- Independent from kinetic models

Evaluation of drug release

Model-independent method

Used to evaluate and for the comparison of different drug dissolution profiles

Two types:

1. Characterization of specific values of the dissolution profiles (mean dissolution time, area under the curve, dissolution efficiency) – statistical evaluation/comparison

Dissolution Efficiency (D.E.)

Ratio of AUC of dissolution curve and the AUC of the 100% dissolution.

$$D.E. = \frac{\int_{0}^{t} m_t dt}{m_{100\%}t} \times 100$$

 m_t cumulative dissolution at '*t*' time in % $m_{100\%}$ 100% dissolution

Mean Dissolution Time (MDT)

Time of the 63,2% dissolution.

- *i* no. of samples,
- *n* no. of sampling times,
- t_i average time between t_i and t_{i-1}
- Δm dissolved API amount between t_i and t_{i-1}

Evaluation of dissolution tests

Model-independent method

2. Pairwise comparison of dissolution data by appropriate staticstical methods

fit factors (f_1 , f_2)

Method compares the reference dissolution data to the test preparation .

f₁ difference factor

f₂ similarity factor

$$f_{1} = \frac{\sum_{i=1}^{n} (R_{i} - T_{i})}{\sum_{i=1}^{n} R_{i}} \times 100$$

$$f_2 = 50 \lg \left\{ \left[1 + \frac{1}{n} \sum_{i=1}^n (R_i - T_i) \right]^{-0.5} * 100 \right\}$$

no. of samples, dissolution % at 'i' time of the reference preparation, dissolution % at 'i' time of the test preparation

n R_i T_i

fit factors (f_1, f_2)

If the *diference* (f_1) *factor* =0, then the dissolution of the reference and the test preparation are considered to be equal.

fit factors (f_1, f_2)

Similarity (f_2) factor is a figure between 0 and 100. If $f_2 > 50$, then the two curves are similar.

Evaluation of drug release tests

Model-dependent method

- 1.) With theoretically valid background
- 2.) Without theoretical background, based on experiences

Zero order dissolution kinetics

- m API amount at 't' time
- t time
- c API % at 't' time
- k rate constant

First order kinetics

polimer matrix diffusion Higuchi formula

$$m = \sqrt{D(2C - C_s)C_s t}$$

m dissolved API amount at 't' time diffusion constant

API solubility

 C_{s}

API concentration at zero time

porous systems

$$m = \sqrt{\frac{D_s \varepsilon C_s}{\tau} (2M - \varepsilon C_s)t}$$

- m dissolved API % at 't' time
- M API amount in the matrix
- C_s API solubility
- *D_s* API diffusion constant
- ε porosity
- *τ* convolution constant

Biological erosion

$$m = k_e A_e t$$

Osmotic systems

$$m = \frac{\pi A}{h} \Delta p C_s t$$

- *m* dissolved API % at 't' time
- *π* permeability
- A surface
- $p\Delta$ difference in osmotic pressure
- C_s solubility
- *h thickness of the semipermeable membrane*

General model: Weibull model

$$m/m_{\infty} = 1 - exp\{-\left[\left(t - t_{o}\right)/\tau\right]\}^{\beta}$$
$$m/m_{\infty} = 1 - e^{-\left[\frac{t - t_{o}}{\tau}\right]^{\beta}}$$

- m dissolved API % at 't' time
- m_{∞} dissolved API % at $t=\infty$ time
- t time
- t_0 lag time
- τ time of 63,2% API dissolution
- β shape factor

Weibull model

β shape factor

 $\beta = 1 - ZOK$ dissolution

Solid oral dosage forms

Immediate release typically means that 75% of the API is dissolved within 45 minutes

Rapidly dissolving: ≥ 85% in ≤ 30 minutes
 Very rapidly dissolving: ≥ 85% in ≤ 15 minutes

Comparative dissolution testing Profile similarity determination

Two conditions to determine if the dissolution profiles of two products/batches in a particular dissolution medium are similar:

- If both the test and reference product show more than 85% dissolution within 15 minutes, the profiles are considered to be similar
 - No calculations are required

If this is not the case, apply point 2

- 2. Calculate the f₂ value (similarity factor):
 - If f₂ ≥ 50, the profiles are normally regarded similar

Comparative dissolution testing Similarity factor f2

$$\mathbf{f}_2 = 50 \bullet \log \left(\frac{100}{\sqrt{1 + \frac{\sum_{t=1}^{t=n} \left[\overline{R}(t) - \overline{T}(t)\right]^2}{n}}} \right)$$

n = number of time points

R(t) = mean % API dissolved of reference product at time point x

T(t) = mean % API dissolved of test product at time point x

- Minimum of 3 time points (zero excluded)
- 12 units (each in own dissolution vessel) for each product (for "official" purposes)
- Only one measurement should be considered after both products have reached 85 % dissolution
- **RSD** at higher time points $\leq 10\%$

Comparative dissolution testing Dissolution conditions (study design)

Apparatus	Paddle, 50 (75) rpm or						
(choice)	Basket, 100 rpm						
Dissolution media	 Buffer pH 6.8 <u>or</u> simulated intestinal fluid without enzymes 						
All three media for full	2. Buffer pH 4.5						
comparison	3. 0.1 M HCI <u>or</u> buffer pH 1.2 <u>or</u> simulated gastric fluid without enzymes						
Volume of media	900 ml or less						
Temperature	37°C ± 0.5°C						
Sampling points	10, 15, 20, 30, 45, (60, 120) min. (typical)						
Units (individual)	12 for "official" studies						

Typical time points Immediate release tablets (capsules)

Example

Determination of similarity of profiles

Example 1-A			Example 1-B		
	% API dissolved			% API dissolved	
Time (min)	Tablet A (Ref)	Tablet B (Test)	Time (min)	Tablet D (Ref)	Tablet E (Test)
10	87	94	10	55	57
15	96	99	15	72	78
20	99	99	20	85	91
30	100	99	30	97	100
45	101	99	45	102	100
60	101	99	60	103	101
f2 required?	No, ≥ 85% in 15 min		f2 required?	Yes	
f2 (n = N/A ?)	profiles similar		f2 (n = 3 ?)	64 (similar)	

Example

Determination of similarity of profiles (cont.)

Example 1-C			Example 1-D		
	% API dissolved			% API dissolved	
Time (min)	Tablet X (Ref)	Tablet Y (Test)	Time (min)	Tablet A (Ref)	Tablet Y (Test)
10	29	34	10	87	55
15	38	41	15	96	72
20	47	50	20	99	85
30	63	64	30	100	97
45	80	79	45	101	102
60	95	91	60	101	103
f2 required?	Yes		f2 required?	Yes	
f2 (n = 6 ?)	74 (similar)		f2 (n = 3 ?)	31 (not similar)	

Thank you for the attention!