Analysis of granules' flowability

Introduction/ Object: flow property of solid grain aggregation is an important characteristic of material. It strongly depends on grain-size distribution, humidity, formal and surface property of grain, electrostatic charge, etc.

Performing the practice:

- 1: Measure 100.0 g sample.
- 2: Put the ASTM funnel in such a way, that the orifice 4.0 cm from the desk.

3: Block the orifice of the funnel with a spatula.

4: Snatch the spatula, run off the material. Do at least five parallel measurements! Measure the flow time.

5: Measure the sample homogenised with flow enhancer excipients. Do the analysis in conformity with 2-4 points.

Assessment:

Calculate the angle of repose, the mass flow (g/s) of powder/granule, and the volumetric flow rate (ml/s) of powder/granule!

h= altitude of aggregate (mm)

r'= half line of aggragate (mm)

d₁= diameter of aggragate

d₂= inner diameter of discharge hole of funnel (mm) {10mm}

University of Pécs Institute of Pharmaceutical Technology and Biopharmacy Laboratory education	Pages: 1/1 Practice number: D.III.i.2.2		
Task: Granule flowability analysis			
Group:	Responsible for the worksheet:		
Practice supervisor:	Date:		

Aim of practice:

Purity and quality of tools:

Tools	Qua	Controller's	
	Appropriate	Inappropriate	signature
ASTM funnel			
plastic card			
measuring tube			
stop-watch			

Measuring: 100.0 g granules

Measuring	Flow time (s)	weight of heap (g)	volume of heap (ml)	angle of repose (°)
1.		100		
2.		100		
3.		100		
4.		100		
5.		100		

Measuring: 100.0 g granules glidant

Measuring	Flow time (s)	weight of heap (g)	volume of heap (ml)	angle of repose (°)
1.		100		
2.		100		
3.		100		
4.		100		
5.		100		

Assessment:

Calculate the mass flow (g/s), the volumetric flow rate (ml/s), the average angle of gradient and the efflux time of powder/granule.

D.III.i.4.1

Powder-rheological analysis

Apparent volume

Introduction/Object

Performing the practice:

1: Measure 50.0 g of the sample.

2: Put it in the measuring cylinder with one movement.

3: Fix the measuring cylinder to the Erweka volumetric apparatus.

4: Set the tap number.

5: Read off the volume.

6: Discharge the sample and clean the measuring cylinder.

Assessment:

Calculate the rates of density and compactibility.

Illustrate on a diagram the volume, the density and the tap number (density and volume on y-axis/tap number on x-axis).

Calculate the value of the Hausner-factor and the Carr-index:

$$Hf = \frac{\rho_T}{\rho t}$$

$$Carr-index = \frac{\rho_T - \rho_t}{\rho_T} \cdot 100$$

$$\rho_{\rm T}$$
 = tapped density

 ρ_t = filled (bulk) density

According to the literature the flowability of the sample is:

Hausner-factor:

Carr-index:

University of Pécs	Pages: 1/1		
Institute of Pharmaceutical Technology and	Practice number: D.III.i.4.1		
Biopharmacy			
Laboratory education			
Task: Analysis of apparent volume			
Group:	Responsible for worksheet:		
Practice supervisor:	Date:		

Purity and quality of tools:

Tools:	Qualification		Controller's	
	Appropriate	Inappropriate	signature	
ERWEKA SVM 102				
Patendula				

Measuring: measurand 50.0 g + external phase of tablet

Immont				1 14	Corr
Impact	Volume (V)	Density [g/ml]	Compactibility	Hf	Carr-
number	[ml]		(Vn-Vn+1) [ml]	factor	index
0					
10					
20					
30					
40					
50					
100					
150					
200					
250					
500					
750					
1000					
1010					
1020					
1030					
1040					
1050					
1100					
1150					
1200					
1250					

$$Hf = \frac{\rho_T}{\rho_t}$$

$$Carr-index = \frac{\rho_T - \rho_t}{\rho_T} \cdot 100$$

 $\rho_T =$ tapped density $\rho_t =$ filled (bulk) density

Assessment:

Illustrate on a diagram the volume, the density and the impact number of function (density and volume on y-axis/ impact number on x-axis).

Calculate the value of the Hausner-factor and the Carr-index!