Fluidization

University of Pécs

Institute of Pharmaceutical Technology and Biopharmacy

2019.10.09. 15:19

Different solid systems in the pharmaceutical technology

In pharmaceutical practice can be:

Granules may be created by

- **1.** Aggregation from smaller particles building up granulation (wet, melt granulation), or
- **2. Desaggregation** from larger particles e.g. briquette (compaction, dry granulation)

Definition

Fluidization is the **operation** by which fine solids are transformed into a **fluidlike** state through contact with a gas or liquid.

A material is converted from a static solid-like state to a dynamic fluid-like state.

This process occurs when a fluid (liquid or gas) is passed up through a solid material (ie. powders, granules, tabletts).

Before fluidization

Fluidization (like boiling water)

Buoyancy, surface tension, viscosity...

"Water Level, pourable

The formation of fluid state

The particles in the bed can be expanded by increasing air (fluidum) speed till the point, of starting of fluidization.

In the fluid state surface of the bed begins to wave (fluctuate). The system seems like a boiling liquid.

The effect of the fluidum speed to the behaviour of the system

Stationary-bed

height of the fixed-bed (L_o)

speed of the fluidum v = 0

Loosen-bed

height of the loosen-bed (L_o)

speed of the fluidum (v_l)

Fluid bed

heihgt of (tumbling) fluid bed (L_f)

speed of the fluidum (v_f)

Pneumatic transport

speed of the fluidum (v_p)

 \boldsymbol{V}

Investigation of the fluid bed

Fluidization disorders

Disorders

Snapshots of fluidization: particle positions at different points in time.

Disorders

Disorders

Bubble formation

Disorders

Slugging

Disorders

Channel, geyser formation

Particle positions at different points in time.

Operation parameters of

fluidization

The mean operation parameters of the process

Independent variables

- mass of content (m),
- geometry and volume of the fluid-bed reactor,
- the properties of the base plate (sieve),
- speed of air,
- pressure of air,
- speed and pressure of the spraying (injector) air.

The mean operation parameters of the process

Dependent variables

- pressure drop (Δp),
- height of the bed (L),
- viscosity of the bed (η) ,
- minimum of the fluidization velocity (v_{fmin}),
- material loss, delivery of fine powders (m_k) .

The pressure drop of the fluidum against the fluid air velocity

Pressure drop during the initial phase

Changing of the bed-height (L) in the fluid bed

Ratio of beds(R)

L_f height of the fluid bed

 L_{fmin} the height of the minimal fluidized bed ($V = V_{fmin}$)

The pressure drop (Δp)

$$\Delta p = L(1-\varepsilon)(\rho_{sz} - \rho_f)g$$

- L height of the fluid bed
- E porosity (or void fraction)
- ho_{sz} density of fixed bed
- ρ_f density of the fluid bed
- g gravity force

 p_2

 p_1

 $\Delta p = p_1 - p_2$
Parameters of Fluidization

Void volume (ɛ)

$$\varepsilon = 1 - \frac{m_{sz}}{AL_f(\rho_{sz} - \rho_f)}$$

- *m*_{sz} mass of content
- A cross-section area of the fluidizer

$$L_f$$
 height of the fluid bed

Parameters of Fluidization

Void volume (ε)

 V_f volume of the fluid bed

 V_f - V_{sz} volume of the void (space) between the particles V_{sz} mass of the content

Parameters of Fluidization

Pressure drop ($\Delta p = p_1 - p_2$)

$$\Delta p = \frac{m_{sz}(\rho_{sz} - \rho_f)}{A\rho_{sz}}$$

- m_{sz} mass of the content
- ρ_{sz} density of the fixed bed
- ρ_f density of the fluid bed
- *A* cross-section area of the fluidizer

ACCESSOFIES and the design of flidizers

Base plate (sieve)

A cross-section area

Rotameter

The pressure control valve

Spraying nozzle

liquid for granulation

multi-headed spraying nozzle

Dust-collector

collecting

return

Practice of Fluidization

Equipment in the laboratory

Equipment in the laboratory

Equipments in the industry

Intermittent operation

Glatt granulator

Industrial fluidization instrument

Aim of the fluidization:

- drying,
- agglomeration (granulation),
- coating (granules, pellets, tablets).

Drying

fluid bed

55

Drying with fluidization

advantages

- large contact surface
- excelent heat transfer
- the heat sensitive substancies can be dried by fluidization because of the excelent heat transfere needs a lower temperature
- good material transport (wetting-drying) moisture sensitive ingredients

disadvantages

- powder formation
- powder flow out
- costs

Drying with fluidization

Industrial fluidization instrument for granulation

granulation

material

Granulation with a fluidizer

advantages

- all steps in one equipment (mixing, wetting, agglomeration, drying)
- huge contact surface
 (heat and material transport is very good)
 (continuous particle formation with paralell drying)

<u>disadvantage</u>

- inhomogenity may be occured (see the fluidization disorders)
- dust (fine powder) formation (and so flow out phenomenon)
- energy costs

A fluidizáció gyakorlata

Fluid coating bottom spray (Wurster)

Fluid coating

bottom spray (Wurster)

Precision-Coater™ module

Industrial fluidization instrument for coating

measuring materials in instrument

starting of fluidization

coating with solution of fluccoating material

end of fluidization

product (dried coated material)

Fluid coating advantages

- all steps in one equipment
 (mixing, wetting, multi layer coating, drying)
- huge contact surface
 (heat and material transport is very good)
 (continuous particle formation with paralell drying)

disadvantages

- inhomogenity may be occured (see the fluidization disorders)
- dust (fine powder) formation (and so flow out phenomenon)
- energy costs
- damages of the film coat
- the particles adhere to each other and also to the wall

Intermittent and continous

operation

Intermittent operation

Continuous operation

Security technology

RISK OF DUST EXPLOSION

The end